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INTRODUCTION

Modern means of transport, such as aircrafts, can contain several dozens transmitting
and receiving antennas aboard. Each of these antennas is the potential source of the
interference for the others. That is why the developers have to take appropriate steps to
decrease the undesirable reciprocal effects. This can be made, for example, by means of
the optimal positional relationship, or directional patterns correction, or by means of the
various coverings.
This work presents a method of the body impedance (or covering) distribution
determination, under which the field of the first antenna is the lowest on the second one.
It is based on the well-known asymptotic methods of field determination - Geometrical
Theory of Diffraction (GTD), Uniform Asymptotic Theory (UAT) [1] and Ritz method
for functional minimization [2].

PROBLEM SETTING

Let us consider the following problem: The point of observation M is situated in the
shadow region relative to point source M0 (fig. 1). The body is bounded by the smooth

curve 1.

M
..............

Fig.

The curvature radius of / is p(s), where s is the natural parameter of 1. The impedance

of the body g(s) can be any smooth complex function of s with the only restriction

lg(s)[ = 0(1). This restriction will be explained later. Enter the coordinates (s, n) where

n is the length of the perpendicular dropped to the body from a point, and s is the natural
parameter of the meet point of the body and the perpendicular. The field at the point M
can be calculated using GTD formulas for the creeping waves if both the point source
and the observation point are far enough from the body. If the points are close to the
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body, the asymptotic formulas of V.M. Babich and V.S. Buldyrev [1 ] should be used:

U(M) = Y F,(r(o,. r.(p + 2;Tn;k);

IF,,(r 0, p0;rp;k) 1!6s)

____ r, 2i _ _ 4__ [ (sP), el(1)

exp i ) ( k) [' 2/3(s + ' o s) g(s L[ ,o(s- p2 _ "'"
expi a(s)- a6k(s') L O)k

ex ia ( () a 0(3 O + O(k -2/3) w(T(ýP,, )w(T(P, M))

where w, (x), 14,'(x) are the Airy function of first order and its derivative

(wý, (z) = 2e 6 2 Ai(ze 3)); • is the p-th root of the equation w,(•,) 0" v = nk 2 ',
2

and a],0 T(ý,M) are defined by the following formulas:

a,() (s) 2 (J2p-4'3(s) - ý-± 13P'2(s) 2P(s)p"(s)>s)

T(ý, M) - (k)1/3 +(~~) Ok 3

It is evident that the formula (1) can't be used if the impedance becomes too small by

absolute value. That is why the present method doesn't allow the passage to the limit

g(s) ->O .
We are interested in the function g(s), which minimizes one of the following

functionals: F, (g.U) = (g(•):, M.A0, k)

F,(g(s))=max U(g(s);M +6M,,M, k)

F3 (g(s)) = max U(g(s);M, Mo +SM0',k)

F4 (g(s)) = max U (g(s); M, M0,k + Rk,)

The functionals F, 34 can be used if the source, the observation point or the frequency

varies within the defined limits. They also allow estimating the stability of the results to

the deviations of the initial conditions.
The problem of functional minimization can be reduced to problem of function

A'

minimization if we assume that g(s) = I af,, (s) + R A(s) where fp,(s) are the members
P

of a set of orthogonal functions that is complete on the defined space, and R\¥ (s) is the

remainder [2]. There is a great variety of function minimization methods. In the present

work the method of Nelder and Mead [3] has been used, though the other methods, for
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example [4], are also applicable.

NUMERICAL RESULTS
In order to test the present method, it was applied to the problems of scattering on
circular, elliptic and parabolic cylinders.
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The fig. 2,3 shows the field amplitude dependencies in the point M on the real and
imaginary parts of the impedance ( s. = 0; s = 7r; n = no =0.1; p = 1; kp = 10 ). On the fig.

2 Re(g(s)) = const = ±1, and on the fig. 3 Im(g(s)) const = ±2. The dependencies

have extremums at small real (imaginary) parts of the impedance, and have the common
limit if Re(g) -- ±oo (Im(g) -* ±oo). This allows to solve both the problem for

minimization and maximization of the field. It is evidently from fig. 2,3 that the
minimum of the field for the circle can be reached only if the real part of the impedance
becomes negative at least in a small sector, and the maximum - only if the real part
becomes positive at least in a small sector. The fig. 4 shows the impedances that
minimize the functional F, (g(s)) (the geometry is the same as in the previous example).

Both distributions are symmetrical relative to the point 7r /2 accordingly to the
reciprocity principle. The optimal imaginary part of the impedance for the parabolic
cylinder is shown on fig.5 (kF=10 where F is the focal distance;
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so =-F;s = F;nO = 0.05F;n = 0.IF;Re(g(s)) = -1). The minimum of the field is still

observed only for the negative real parts, but the distribution is no longer symmetrical
and parabolical.

CONCLUSIONS

The proposed method of field minimization in the shadow region has shown that it can
be used for various optimization procedures provided that ka - 10 or larger, where a is
the typical dimension of the scatterer. It can also be generalized to the 3-dimensional
case and improved by accounting surface waves in the case Im g(s)< 0; Re g(s) > 0.
As the formula (1) actually presents the Green's function, the method can be easily
modified to deal with distant sources.
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